Kinematic Equations

- Descriptions of Motion (words \rightarrow sentences)
- In more than one dimension now

$$
\begin{aligned}
& \vec{r}=(x, y), \vec{v}=\left(v_{x}, v_{y}\right) \\
& \vec{a}=\left(a_{x}, a_{y}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \vec{r}=\vec{r}_{i}+\vec{v}_{i} t+\frac{1}{2} \vec{a} t^{2} \\
& l_{,} x=x_{i}+v_{i x} t+\frac{1}{2} a_{x} t^{2}, \quad y=y_{i}+v_{i y} t+\frac{1}{2} a_{y} t^{2} \\
& \vec{v}=\vec{v}_{i}+\vec{a} t \\
& \text { ?, } \quad v_{x}=v_{i x}+a_{x} t, \quad v_{y}=v_{i y}+a_{y} t
\end{aligned}
$$

Falling marbles demonstration
$t_{t_{x=0}^{y+}}^{t_{n}}$

$$
\begin{aligned}
& \text { (1) dropped } \\
& v_{i x}=v_{i y}=0 \\
& x=0, \quad y=h
\end{aligned}
$$

$$
\begin{gathered}
v_{i x}=v_{i y}=0 \\
x=0, \quad y=h \\
y=y_{i}+v_{i y} t-\frac{1}{2} g t^{2} \\
y=h-\frac{1}{2} g t^{2} \\
x=x y_{0}^{0}+v_{i x} t \\
x=0
\end{gathered}
$$

$$
a_{y}=-g, \quad a_{x}=0
$$

(2) shot

$$
\begin{aligned}
& V_{i x}=V_{x}, \quad V_{i y}=0 \\
& x=0, \quad y=h
\end{aligned}
$$

$$
y=y_{i}+v_{i y} t-\frac{1}{2} g t^{2}
$$

same $\longleftarrow y=h-\frac{1}{2} g t^{2}$
$\rightarrow t_{\text {fall }} \rightarrow$ same \rightarrow h. 1 table@ same tin

$$
\begin{aligned}
& x=x_{0}^{0}+v_{i x} t \\
& x=v_{x} t_{f a l l}
\end{aligned}
$$

Projectile Motion

$$
\begin{aligned}
& \vec{r}=\vec{v}_{i} t-\frac{1}{2} \vec{g} t^{2} \\
& x=v_{i x} t \quad a_{x}=0 \\
& y=v_{i y} t-\frac{1}{2} g t^{2}
\end{aligned}
$$

$$
\begin{aligned}
& v_{i x}=v_{i} \cos \theta \\
& v_{i y}=v_{i} \sin \theta
\end{aligned}
$$

A proud, rejuvenated, properly-inflated football is launched with a velocity v_{0} at a direction θ above the horizontal. What is its maximum height?

$$
y_{\text {max }}=\frac{1}{2} \frac{v_{i}^{2} \sin ^{2} \theta}{g}
$$

$$
\begin{aligned}
& v_{y}=v_{i y}-g t \\
& v_{y}=0 \rightarrow \text { max height } \quad 0=v_{i y}-g t_{1 / 2} \\
& t_{1 / 2}=\frac{v_{i y}}{g}=\frac{v_{i} \sin \theta}{g} \\
& y_{\text {max }}=v_{i g} t_{1 / 2}-\frac{1}{2} g t_{1 / 2}^{2} \\
&=v_{i} \sin \theta\left(\frac{v_{i} \sin \theta}{g}\right)-\frac{1}{2} g\left(\frac{v_{i}^{2} \sin ^{2} \theta}{g^{2}}\right) \\
& i^{2} \sin ^{2} \theta
\end{aligned}
$$

A proud, rejuvenated, properly-inflated football is launched with a velocity v_{0} at a direction θ above the horizontal. What is its maximum range?

$$
\begin{aligned}
& \uparrow \quad \begin{aligned}
x & =x_{i}+v_{i x} t+\frac{1}{2} q_{x} t^{2}
\end{aligned} \\
& t_{\text {tot }}=2 \times t_{1 / 2} \\
& V_{i x}=V_{0} \cos \theta \\
& R=v_{\text {ix }} t_{\text {tot }}=v_{0} \cos \theta \frac{2 v_{0} \sin \theta}{g} \\
& =\frac{2 v_{0}^{2} \sin \theta \cos \theta}{g} \\
& \sin (2 \theta)=2 \sin \theta \cos \theta \\
& \left.R=\frac{v_{0}^{2} \sin (2 \theta)}{g}\right]
\end{aligned}
$$

Discussion of Range

$$
45^{\circ} \rightarrow \text { max range }
$$

Range from a cliff:

Forces
$F \rightarrow$ one object presses on another

$$
\left.\vec{F}=m \vec{a}, \quad \vec{a}=\frac{\vec{F}}{m}\right\}^{\text {"why }} \text { " of }
$$

Newton's $3^{\text {red }}$ Law $\rightarrow \quad \vec{F}_{A}=-\vec{F}_{B}$

Drag Forces

$$
\begin{aligned}
\vec{F}_{\Delta} & =-b \vec{v} \\
& =-b \mid \vec{v}^{2}
\end{aligned}
$$

Trajectories under the influence of a drag force

Graph

$$
F=-(0,2) v^{2}
$$

Coandă Effect

Levitating Ping-pong ball

Magnus Effect: Drag \& Spin

Magnus Effect: Drag \& Spin

